
2.2 Differential Forms

With vector analysis, there are some operations such as the curl derivative that are difficult to understand
physically. We will introduce a notation called the calculus of differential forms that is very similar to vector
analysis, but gives us an intuitive way to visualize these operations.

Since it is easy to convert a vector to a differential form and vice versa, we can use either notation to solve a
given problem. Mathematically, working with differential forms is very similar to working with vectors, but
the pictures that we can draw for fields when we express them as differential forms are quite different and
in many cases provide a better way to visualize otherwise complicated phenomena. So, we will use mostly
vectors, and convert to differential forms in places where they help in illuminating a difficult point.

2.2.1 What is a Differential Form?

A differential form is a quantity that can be integrated, including the differentials. In the integral below,
3x dx is a differential form: ∫ b

a
3x dx︸ ︷︷ ︸
one-form

This differential form has degree one because it is integrated over a 1-dimensional region, or path. We call a
differential form of degree one a one-form. Differential forms can be added together, with the differentials
being linearly independent. The sum ofdx anddy, for example, is the one-formdx+ dy. The sum of3x dx
and2 dx is (3x + 2) dx since we can combine like differentials.

Two-forms are integrated by double integrals over surfaces. For example,zx2dx ∧ dy is a two-form. Two-
forms under integral signs are writtenzx2dxdy, without the wedge. We want to take these differential forms
out from under the integral signs so that we can combine them and take derivatives of them, much like we
do with vectors. This requires a special rule for combining forms, called thewedgeor exterior productand
represented by the symbol∧, that allows us to think of two-forms as a combination of one-forms.

Table 2.1 shows differential forms of various degrees. Zero-forms and three-forms correspond to scalars
or functions. One-forms and two-forms correspond to vectors. It should be obvious why the one-form
and vector given in the table go together. The relationship between the two-form and its associated vector
will become clear below when we show how to draw pictures of two-forms. Functions are “integrated” by
evaluating them at a point, and a point is zero-dimensional, so we can call functions zero-forms.

Degree Region of Integration General Expression Vector/Scalar

zero-form “Point” f(x, y, z) f(x, y, z)
one-form Path Axdx + Aydy + Azdz Axx̂ + Ayŷ + Az ẑ
two-form Surface Axdy ∧ dz + Aydz ∧ dx + Azdx ∧ dy Axx̂ + Ayŷ + Az ẑ
three-form Volume ρ(x, y, z) dx ∧ dy ∧ dz ρ(x, y, z)

Table 2.1: Differential forms.

We will now discuss each type of form separately, and show how to draw pictures for them. Drawing a
picture of a vector is easy: a line with an arrow. But there is only one type of picture for vector analysis.
With differential forms, there are three pictures. This is one of the things that makes differential forms
helpful in electromagnetic theory.
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2.2.2 One-forms

A one-form is drawn as surfaces. The one-formdx has surfaces perpendicular to thex-axis spaces one unit
apart, as shown in Fig. 2.1(a).5 dx also has surfaces perpendicular to thex-axis but they are spaced more
closely: five per unit distance. This is because of the way one-forms are integrated. If we integratedx along
a path from the point(.5, 0, 0) to the point(1.5, 0, 0), we get one. If we draw the path, it crosses one of the
surfaces ofdx. With a larger coefficient, the integral is bigger, so the path has to cross more surfaces.

The one-formdy has surfaces perpendicular to they-axis. The one-form2 dz has surfaces perpendicular to
thez-axis spaced twice as closely as those fordx, as in Fig. 2.1(b).
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Figure 2.1: (a) The one-formdx. The surfaces ofdx are infinite in thez andy directions, and are drawn with
edges only for graphical clarity. For the same reason, not all of the surfaces are shown. (b) The one-form
2dz, with surfaces perpendicular to thez-axis and spaced twice as closely as those ofdx. (c) A general
one-form, with curved surfaces and surfaces that end or meet each other.

More complicated forms can also be drawn. The one-formdx + 5dy is drawn as slanted surfaces that are
perpendicular to the vector̂x + 5ŷ. The one-formfdx consists of surfaces that are perpendicular to the
x-axis but with spacing that gets closer or farther apart depending on the value of the functionf . In general,
the surfaces of a one-form can twist wildly, end, or meet each other. An example of this is shown in Fig.
2.1(c).

Fig. 2.2 shows how an arbitrary one-form is integrated over a path. The integral of a one-form over a path is
the number of surfaces of the one-form pierced by the path. Since we integrate along the path in a particular
direction, we have to keep track of theorientationof each surface. The orientation of a form is determined by
the sign of its coefficients. If a path crosses a surface of the one-formdx in the+x direction, for example,
that contributes a positive value to the integral. If the path crosses the surface in the−x direction, that
contributes negatively.

In rectangular coordinates, to convert one-forms into vectors and vectors into one-forms, we interchange
basis one-forms with basis vectors as below:

dx ↔ x̂, dy ↔ ŷ, dz ↔ ẑ. (2.28)
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Figure 2.2: Integrating a one-form over a path graphically. Since the path crosses four surfaces, the value of
the integral is four.

The vector corresponding to a one-form is sometimes called the one-form’sdualvector.

2.2.3 Two-forms

A two-form is drawn as two sets of surfaces that intersect to form tubes. To drawdx ∧ dy, we superimpose
the surfaces ofdx and the surfaces ofdy as in Fig. 2.3(a). This produces tubes that point in thez direction.
This explains the correspondence between the two-form and its dual vector given in Table2.1.

Graphically, understanding the integral of a two-form over a surface is easy. We just count how many tubes
pass through it, as in Fig. 2.3(b). Of course, we have to keep track of the orientation of the two-form (the
direction of the tubes) and the orientation of the surface it is being integrated over. A surface is oriented
by choosing one of the two normal directions. Tubes crossing in the same direction as the orientation
make a positive contribution to the value ot the integral; tubes crossing in the negative directions contribute
negatively.
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Figure 2.3: (a) The two-formdx ∧ dy, with tubes in thez direction. The tubes are infinitely long, but are
drawn as finite for clarity. There are also infinitely many tubes in thex andy directions. (b) A two-form is
integrated over a surface by counting the number of tubes passing through the surface.

As we noted earlier, between the differentials of a two-form there is a special product, the wedge∧ or
exterior product. Sometimes, the wedge is dropped, so that the two-formdx dy, for example, is the exterior
product of the one-formsdx anddy, or dx ∧ dy.

The exterior product is anticommutative, so that switching the order of two differentials changes the sign:
dx ∧ dy = −dy ∧ dx. One consequence of this property is thatdx ∧ dx = dy ∧ dy = dz ∧ dz = 0. The
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anticommutativity of the exterior products allows us to simplify differential forms.

Example 2.1. Exterior product of one-forms.

Let a = 3dx + dy and b = 2dx + 3dy. Then

a ∧ b = (3dx + dy) ∧ (2dx + 3dy)
= 6dx ∧ dx + 9dx ∧ dy + 2dy ∧ dx + 3dy ∧ dy

= 9dx ∧ dy − 2dx ∧ dy

= 7dx ∧ dy.

This two-form is dual to the cross product (3x̂ + ŷ)× (2x̂ + 3ŷ) = 7ẑ.

For convenience, we always put differentials of two-forms into the right cyclic ordersdy ∧ dz, dz ∧ dx and
dx ∧ dy. Two-forms with differentials in right cyclic order can be converted to vectors by interchanging
basis forms and basis vectors as follows:

dy ∧ dz ↔ x̂, dz ∧ dx ↔ ŷ, dx ∧ dy ↔ ẑ. (2.29)

There are two types of vectors: those that are dual to one-forms, and those that are dual to two-forms.
Usually, vectors dual to two-forms represent flow or flux.

2.2.4 Three-forms
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Figure 2.4: The three-formdx ∧ dy ∧ dz, with cubes of side equal to one. The cubes fill all space; only a
few of them are drawn in the figure.

A three-form has three sets of surfaces that form boxes (Fig. 2.4). The larger the coefficient of the three-
form, the smaller and more tightly packed the boxes. The integral of a three-form over a volume is the
number of boxes inside the volume, taking into account the sign of the contribution to the integral if the
coefficient of the three-form is negative.

We always put the differentials of a three-form in right cyclic order,dx ∧ dy ∧ dz. Since any combination
of the three differentialsdx, dy anddz can be converted todx∧ dy ∧ dz using the anticommutativity of the
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exterior product, any sum of three-forms combines into one term. The coefficient of this term is a scalar.
The three-form is dual to this scalar.

A three-form represents a volume density, so the coefficient of a three-form has units of length−3. Some
scalars, such as temperature, are not volume densities. The calculus of differential forms lets us keep these
two types of quantities separate.

Finally, there are no four-forms, since there are only three differentials, so that any four-form has a repeated
differential in each term and so must vanish.

2.3 Integrating Differential Forms

When integrating a vector field over a path or surface, the dot product with a differential vector actually
converts the vector field into a differential form. So, it is more natural to integrate a differential form than a
vector field.

Consider for example the one-formα = 2dx + 3xdy and a pathP which lies along the curvey = x2 from
the point(0, 0) to (1, 1). We wish to find ∫

P
α (2.30)

This is done by parameterizing the pathP in terms of a new variablet, so that the path becomes(x = t, y =
t2), with t ranging from zero to one. We then substitute these values forx andy into the integral:

∫

P
α(x, y) =

∫ 1

0
α(t, t2)

=
∫ 1

0
[2dt + 3td(t2)]

=
∫ 1

0
(2 + 6t2)dt

= 4

When the symbold acts ont2, we use implicit differentiation to obtain2t dt. Integrating the dual vector
2x̂ + 3xŷ over the same path gives the same result.

This same approach can be used to evaluate surface integrals of two-forms as well. A parameterization of
a surface requires two variables, so that the surface is given by(x = a(s, t), y = b(s, t), z = c(s, t))
wherea, b andc are functions ofs andt. These functions are substituted into the two-form to be integrated,
yielding a two-form with the differentialsds ∧ dt, which is then integrated over the appropriate limits ins
andt.
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2.3.1 Star Operator

The star operator relates zero-forms with three-forms and one-forms with two-forms according to the rela-
tionships

? 1 = dx ∧ dy ∧ dz (2.31)

and

? dx = dy ∧ dz (2.32)

? dy = dz ∧ dx (2.33)

? dz = dx ∧ dy (2.34)

Also,? ? = 1, so that? dy∧dz = dx, for example. Graphically, for a one-formα, the tubes of the two-form
?α are perpendicular to the surfaces ofα.

2.3.2 Summary

Differential forms are classified by degree: zero-forms are functions, one-forms are dual to vectors and are
drawn as surfaces, two-forms are also dual to vectors but are drawn as tubes, and three-forms are dual to
scalars and are drawn as boxes. Differential forms combine using the exterior product to yield differential
forms of higher degree. One-forms are integrated over paths, two-forms are integrated over surfaces, and
three-forms are integrated over volumes.

58


