
5.6 Electromagnetic Power Density

5.6.1 Poynting Vector

Consider Maxwell’s equations in the time domain modified as follows:

H · ∇ × E = −H · ∂B
∂t

(5.150)

E · ∇ ×H = E · ∂D
∂t

+ E · J (5.151)

The divergence of a cross product can be expanded using the identity∇· (E ×H) = H·∇×E −E ·∇×H,
which is analogous to the product rule for the scalar derivative. Therefore,

∇ · (E ×H) = −H · ∂B
∂t

− E · ∂D
∂t

− E · J (5.152)

To further simplify this expression, we use
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Let’s integrate over a volumeV and apply the divergence theorem to the first term:
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σ‖E‖2dV = 0 (5.153)

This isPoynting’s Theoremand represents a power balance or conservation of energy for electromagnetic
fields. The units of each term (after integration) is Watts. We identify each term as:

∮

S
(E ×H) · ds = total power leaving the volume (through the surfaceS)

1
2
µ‖H‖2 = stored magnetic energy density insideV
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ε‖E‖2 = stored electric energy density insideV
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dV = rate ofincreaseof stored energy insideV

∫

V
σ‖E‖2dV = power lost to heat insideV (5.154)

Therefore, the theorem states that:The power leaving the volume + the rate of increase in the stored energy
+ the power going into heat= 0. Note thatE × H has units of W/m2. It represents the density of power
carried by electromagnetic waves across the surfaceS. We call it thePoynting Vector:

S = E ×H (5.155)

Note that this is analogous to instantaneous powerp(t) = v(t)i(t), except thatS has units W/m2.
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In the phasor domain, the average power delivered to a load in a circuit is

P =
1
2

Re{Ṽ Ĩ∗}

Similarly, the time-average Poynting vector indicates the average real power density of a time-harmonic
wave:

Sav =
1
2

Re{E ×H
∗} (5.156)

whereS = E ×H
∗

is the complex Poynting vector.

So, there are three power quantities associated with electromagnetic fields:

1. Instantaneous Poynting vector (time-domain):S = E ×H.

2. Time-average Poynting vector (time-harmonic fields):Sav = 1
T

∫ T
0 S dt, T = 2π/ω.

3. Complex Poynting vector (phasor domain):S = E ×H
∗

The time-average power can be obtained from the complex Poynting vector usingSav = 1
2 Re{E ×H

∗}.

5.6.2 Poynting Vector for Plane Waves
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We know thatH(z) = k̂ ×E(z)/ηc. Therefore
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The time-average power flux is
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For lossless media,

Sav =
|E|2
2η

k̂ (5.157)

So, the power flow is in the direction of propagation of the wave (k̂) and the coefficient is analogous to
V 2/R.
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Solar Illumination

|Sav| = 1 kW/m2 at the Earth’s surface due to sun radiation.

Re = 6380 km = earth radius

Rs = 1.5× 108 km = radius of earth’s orbit around sun

1. Find the total power radiated by the sun

Psun = Sav(4πR2
s) = 2.8× 1026W

2. Find the total power intercepted by the earth. The earth’s cross sectional area isAe = πR2
e.

Pearth = SavπR2
e = 1.28× 1017W

3. Find the electric field strength at the earth (assuming single frequency)

Sav =
|E0|2
2η0

→ |E0| =
√

2η0Sav = 870 V/m

Wireless Signals

How does the power from a wireless communications system antenna decrease with range?

DC Current

Consider a battery attached by wires to a resistor. How does energy move from the battery to the resistor?
Does power flow inside the wires? The surprising answer is no.

We will apply Poynting’s theorem to this system for a closed surface that surrounds the battery but does not
include the resistor. Since the currents are DC, the stored energy term in Eq. (5.153) is zero because the
time derivative is zero. If we assume an ideal battery, then the power loss term is also zero becauseσ = 0.
We have to add another term to account for the power supplied by the battery, which is like theE · J term
in Eq. (5.152) except that the current is an impressed current instead of an induced current. So, Poynting’s
theorem becomes ∮

S
(E ×H) · ds +

∫

V
E · J battery dV = 0 (5.158)

The term on the right represents the electrical power supplied by the battery, which according to Poynting’s
theorem must be balanced by an accompanying outflow of power across the closed surfaceS, represented
by the term containingE ×H. If the wires are ideal, thenE = 0 inside the wires, so the only place the power
flow E ×H is zero is inside the wires!

Differential forms provide a nice picture for what actually happens. The potential produced by the battery
causes surfaces ofE that extend away from the battery to infinity. The current flowing down the wires
produces surfaces ofH that extend from one wire to the other wire. The surfaces ofE and the surfaces of
H intersect to form tubes of the Poynting two-formE ∧H that extend from the battery to the resistor. The
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power supplied by the battery and dissipated in the resistor flows along these tubes. The tubes do follow the
wires, but they are outside of the wires.

If the battery were replaced by a charged capacitor, then the currents and voltages in the system would no
longer be DC. Some of the power would flow along tubes ofE ∧H to infinity, representing power radiated
away from the circuit as waves, and the rest would be dissipated in the resistor. The larger the resistor, the
slower the capacitor discharge, and the less power is radiated away. In the limit as the resistance becomes
zero, no power is absorbed, and all the power radiates away as waves.
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